

## Modelos para estimativa de biomassa

**Ana Cristina Gonçalves** 

Universidade de Évora

A quantificação da biomassa das florestas tem adquirido uma importância crescente devido à sua contribuição para o ciclo do carbono.

As áreas florestais produzem vários bens e serviços, sendo o sequestro de carbono um deles. A quantificação do sequestro de carbono é importante nos seguintes aspectos:

- redução de gases com efeito de estufa (GEE) no âmbito de acordos internacionais, com a contabilização do carbono sequestrado na biomassa viva e o perdido, por exemplo nos fogos florestais;
- > existência de unidades de crédito de carbono para a preservação do sumidouro;
- > aproveitamento da biomassa florestal para fins energéticos, com a qualificação dos resíduos e material florestal disponível

A biomassa é o peso seco de qualquer material, ou seja quando adquire humidade e peso constante, após secagem.

A determinação da biomassa é normalmente efectuada dividindo as árvores nos seguintes componentes:

- Tronco, nas componentes lenho e casca;
- Copa, nas componentes folhas, ramos, flores e frutos;
- \* Raízes, nas componentes raiz principal, raízes grossas e raízes finas.

A avaliação da biomassa pode ser efectuada:

- ✓ Com base no peso verde e teor de humidade;
- ✓ Com base no volume e na massa específica;
- ✓ Com recurso a equações alométricas.

Os dois primeiros métodos são destrutivos, havendo que cortar a árvore retirar amostras. No primeiro caso há que determinar o peso verde das amostras, proceder à sua secagem e determinar o teor de humidade. No segundo caso há que proceder à estimação do volume e da massa específica. Estes dois métodos são difíceis, morosos e onerosos.

As equações alométricas permitem estimar a biomassa por um processo mais simples e expedito.

#### Definições e conceitos

Biomassa de lenho (ww) – somatório da biomassa de lenho correspondente às secções do fuste, pernadas e braças.

**Biomassa da casca (wb)** – biomassa da casca existente nas secções do fuste, pernadas e braças da árvore.

Biomassa da copa (wc) – biomassa correspondente à copa.

Biomassa dos ramos (wbr) – biomassa correspondente aos ramos. Biomassa das agulhas (wl) – biomassa correspondente às agulhas.

Biomassa dos cones (wc) – biomassa correspondente aos cones. Biomassa das raízes (wr) – biomassa correspondente às raízes.

**Biomassa total (w)** – somatório da biomassa de todas as componentes da árvore.

Em Portugal existem equações alométricas para estimação de biomassa para as seguintes espécies:

Azinheira

Castanheiro

Carvalho roble

Eucalipto

Pinheiro bravo

Pinheiro manso

Sobreiro

As funções utilizam como variáveis de base:

Diâmetro à altura do peito,

Altura total.

#### Pinheiro bravo (Faias, 2006)

$$ww = -0.9534 + 1.0011^t \times d^{1.8392} \times h^{0.5524}$$

$$wbr = 0.0035 \times d^{2.6898} \times h^{-0.5183}$$

$$wl = 0.0840 \times d^{1.4810} \times h^{-0.6729}$$

#### Wa = ww + wbr + wl

#### Pinheiro manso (Correia et al., 2008)

$$ww = 18.85 \times \left(\frac{\pi \times d}{100}\right)^{1.68} \times h^{0.95}$$

$$wb = 8.08 \times \left(\frac{\pi \times d}{100}\right)^{1.55} \times h^{0.47}$$

$$wbr = 184.94 \times \left(\frac{\pi \times d}{100}\right)^{3.03}$$

$$wl = 22.27 \times \left(\frac{\pi \times d}{100}\right)^{1.76} \times \left(\frac{h}{d}\right)^{-0.50}$$

$$wa = ww + wb + wbr + wl$$

#### Sobreiro (Paulo e Tomé, 2006)

$$ww = 0.414614 \times du^{1.959968}$$

$$wc = 3.234647 \times du^{1.118181}$$

$$wb = 0.960006 \times du^{1.300779}$$

$$wvc = 22.2664 + 0.006705 \times du^2 + 5.188202 \times ln(hdesc)$$

#### Azinheira (Paulo e Tomé, 2006)

$$ww = 0.164185 \times d^{2.011002}$$

$$wc = 1.909152 \times d^{1.200354}$$

$$wb = 0.600169 \times d^{1.355957}$$

$$wa = ww + wc + wb$$

wa = ww + wc + wb

### Exemplo para a azinheira

|        |      |       | The second second |      |       |        |
|--------|------|-------|-------------------|------|-------|--------|
| id_arv | dap  | ww    | wc                | wb   | wa    |        |
| 1      | 28.4 | 137.4 | 106.0             | 56.1 | 299.5 |        |
| 2      | 20.3 | 69.9  | 70.8              | 35.6 | 176.4 |        |
| 3      | 15.7 | 41.7  | 52.0              | 25.1 | 118.9 |        |
| 4      | 18.0 | 54.9  | 61.3              | 30.2 | 146.5 |        |
| 5      | 16.5 | 46.1  | 55.2              | 26.9 | 128.2 |        |
| 6      | 18.1 | 55.5  | 61.7              | 30.5 | 147.7 |        |
| 7      | 19.9 | 67.2  | 69.2              | 34.6 | 171.0 |        |
| 8      | 26.8 | 122.3 | 98.9              | 51.9 | 273.0 |        |
| 9      | 20.6 | 72.0  | 72.1              | 36.3 | 180.4 |        |
| 10     | 16.6 | 46.7  | 55.6              | 27.1 | 129.4 |        |
| 11     | 17.6 | 52.5  | 59.7              | 29.3 | 141.5 |        |
| 12     | 29.8 | 151.4 | 112.3             | 59.9 | 323.5 |        |
| 13     | 20.1 | 68.6  | 70.0              | 35.1 | 173.7 |        |
| 14     | 25.7 | 112.4 | 94.0              | 49.0 | 255.4 | 2665.0 |

#### Considerações finais

A estimação da biomassa pode ser efectuada com dados de inventário florestal.

O modo de estimação é simples, podendo ser efectuado numa folha de cálculo.

A biomassa pode ser calculada quer para árvores individuais quer para povoamentos.

# Obrigada